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it points in the iz direction, so the net viscous torque is

T = iz
∫ 2π

0

∫ π

0

∫ 2π

0
R2 sin θdθdφ[R sin θ][3ηΩ sin θ]

= iz8πηΩR3.

Of course, here ω = izΩ is the asymptotic angular veloc-
ity of the water with respect to the sphere at rest, while
ωs = −izΩ is the angular velocity of the sphere with re-
spect to the asymptotically resting water, so the torque
on the moving sphere is

Ts = −ωs8πηR3. (B26)

Thus, in Eq. (A8), β′ = 8πηR3.

9. Torque on Ellipsoid

When the shape of the object is the ellipsoid z2/a2 +
(x2 + y2)/b2 = 1 (a ≥ b), the expression for the torque is
of the same form as (B26), but the radius R is replaced
by another expression. For rotation about the long (a)
axis, the result is[79]

R−3

eff =
3
2

∫ ∞

0
dλ

1
(a2 + λ)1/2(b2 + λ)2

=
3
2

[
a

(a2 − b2)b2

− 1
2(a2 − b2)3/2

ln
a +

√
a2 − b2

a−√a2 − b2

]
. (B27)

For b → a, this becomes a−3 + (6/5a5)(a2 − b2) + .... A
good fit for .2 ≤ b/a ≤ 1 is Reff ≈ .84b + .16a. With
b = a/2, (B27) gives Reff ≈ .59a.

For rotation about either of the other axes,

R−3

eff =
3
2

∫ ∞

0
dλ

1
(a2 + λ)3/2(b2 + λ)2

[
λ +

2a2b2

a2 + b2

]
=

3
2(a2 + b2)

[
−a

(a2 − b2)

+
(a2 − (1/2)b2)
(a2 − b2)3/2

ln
a +

√
a2 − b2

a−√a2 − b2

]
. (B28)

For b → a, this becomes a−3 + (9/10a5)(a2 − b2) + ....
A good fit for .2 ≤ b/a ≤ 1 is Reff ≈ .56b + .44a. With
b = a/2, (B28) gives Reff ≈ .72a.

APPENDIX C: GEOMETRICAL OPTICS FROM
THE WKB APPROXIMATION

1. The Problem To Be Solved

The problem addressed in the next four appendices is
to find the image of a point source of light, made by a

ball lens of limited aperture. This is used to discuss the
optimal choice of aperture radius.

Consider a ball lens of radius R (diameter D) and in-
dex of refraction n = 3/2. (n = 1.5 is close enough to
the BK7 glass index n = 1.517 of the ball lens of our ex-
periments.) It follows from Eq. (7) that the focal length
of the lens is f = 3R/2.

The point source of light has wave-number k ≡ 2π/λ,
where λ = .55µm (green light). It is placed at the focal
distance f from the center of the lens. Rays pass through
the lens and then through a coaxial hole of radius b in a
screen (the so-called exit pupil), and proceed onwards.

The light does not converge to a point at infinity, as
predicted by geometrical optics for an ideal lens. Instead,
the light intensity distribution which appears on a screen
at infinity (placed such as to make the image as sharp as
possible) is a circular blob, Although it sounds like some-
thing used by a racetrack oddsmaker, this light intensity
distribution is called the point spread function because it
describes how the light from a point source is spread out
by the lens.

But, first, the connection should be made between this
problem and the one we actually want to solve. The lat-
ter is to use the lens as a magnifying glass. That is, one
places the point source on the optic axis slightly closer
to the lens than f , so that the sharpest image is on a
plane at 25cm on the same side of the lens as the source.
One then divides this magnified image intensity by the
lens magnification, m ≈ 25/f (f << 25cm), to obtain
the apparent image intensity to scale (i.e., as if there was
in fact a spread-out object of that size being precisely
imaged, instead of a point source being imprecisely im-
aged.)

However, if the source is instead put at the focal length,
with the image at −∞, the angular magnification is still
m. But, this is the same angular magnification as when
the image is at +∞, on the opposite side of the lens from
the source. It is this simpler problem we are addressing.

The point spread function for this simpler problem can
be readily utilized to find the intensity distribution for
the magnifier application. For example, suppose we find
a ring of light at infinity, with a dark boundary which
makes angle β0 with a point at the center of the lens.
The magnifier usage has this circle of vanishing intensity
appearing on the 25cm image plane with radius 25β0.
Therefore, the apparent radius of the circle of light is
25β0/m = β0f .

2. Light Field in the WKB Approximation

We shall accept the argument[82] that there is no ap-
preciable error in calculating the light intensity by taking
the monochromatic light amplitude to be described by a
complex scalar field U(x) exp−iωt, instead of the actual
vector electromagnetic field, with the time average inten-
sity given by |U(x)|2.

The wave equation for U(x, t) with a point source of
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light of constant amplitude C at the origin is

∇2U(x, t)− n2(x)
c2

∂2

∂t2
U(x, t) = −4πδ(x)C.

We permit the speed of light c/n(x) to vary through-
out space except in the neighborhood of the origin where
the speed is that of vacuum, c, and the index of refrac-
tion n(x) = 1. Later we shall specialize to n(x) de-
scribing a ball lens, i.e., n(x) = 1 everywhere except
within a sphere where n(x) = n is constant. With
U(x, t) = U(x) exp−iωt and ω = kc, the wave ampli-
tude is the solution of

∇2U(x) + k2n2(x)U(x) = −4πδ(x)C. (C1)

Away from the source, Eq. (C1) may be written in
Schrödinger-like form

−∇2U(x)− k2[n2(x)− 1]U(x) = k2U(x)

It is amusing that turn-of-the-last century physicists got
their insights into quantum theory through optics, while
we get our insights into optics through quantum theory.
The quantum problem, analogous to our optical ball lens
problem, is for a particle of mass 1/2 and momentum
magnitude k (! = 1) emerging from a point and scat-
tering from a spherical potential well of radius R and
constant depth k2[n2 − 1], The wave function is to have
the form r−1 exp ikr in the neighborhood of r = 0, a
point which lies a distance f from the center of the well.
Although this is an exactly solvable problem, it is diffi-
cult to obtain physical results from the analytic expres-
sion, which is expressed as an infinite series of partial
waves[83].

For this reason we shall apply the approximate WKB
method. Quantum texts seem to universally discuss this
method for one-dimensional motion only. However, the
three dimensional problem has been treated[84].

We write U = exp i[kΦ0 + Φ1 + k−1Φ2 + ...] and sub-
stitute into Eq. (C1). Gathering terms of like powers in
k, we obtain (away from x = 0 which shall be handled
later):

k2∇Φ0·∇Φ0 = k2n2, (C2)
2k∇Φ1·∇Φ0 = ik∇2Φ0 (C3)

Eq. (C2) implies that

∇Φ0(x) = n(x)v̂(x), v̂(x) · v̂(x) = 1. (C4)

To find v̂(x) requires implementing the restriction that
Eq. (C4) is a gradient. To do that, consider

[v̂ ·∇]nv̂ = [v̂ ·∇]∇Φ0 =
3∑

i=1

v̂i∇ ∂

∂xi
Φ0

=
3∑

i=1

vi∇nvi =
1
2n
∇[n2v̂ · v̂] = ∇n(C5)

Imagine space filled with the vector field v̂. Picture a
line passing through a point parallel to the vector v̂ at
that point, and continuing on parallel to the vectors it
encounters on its path. Such lines are like the flow lines
of a fluid in steady state flow, with v̂(x) as the (constant
speed) velocity field.

Now, if one imagines moving along a particular flow
line with the fluid, the rate of change of any function
f(x) is given by the substantial derivative

D

Dt
f(x) ≡ f(x + v̂dt)− f(x)

dt
= [v̂ ·∇]f(x).

We see that the left side of Eq. (C5) is the substantial
derivative of n(x)v̂(x).

So, for a fictitious particle of fluid moving with velocity
v̂(t) along a single flow line x(t), according to Eq. (C5),
it satisfies the equation of motion

d

dt
[n(x(t))v̂(t)] =

D

Dt
n(x)v̂(x) = ∇n(x(t)) or

d

dt
v̂ = −v̂

d

dt
lnn +∇ lnn. (C6)

Given a surface, once one specifies the initial velocity
vectors on it, the Newton-type law Eq. (C6) then gives
the velocity of the fluid elsewhere.

The force in Eq. (C6) ensures that the particle keeps
moving with constant speed: the scalar product of Eq.
(C6) with v̂(t) is

1
2

d

dt
[v̂(t) · v̂(t)] = [1− v̂(t) · v̂(t)]

d

dt
lnn(x(t))

(v̂ ·∇ =
∑

i[dxi/dt][∂/∂dxi] = d/dt has been used), so if
v̂ · v̂ = 1 initially, that speed is maintained.

It is easily seen that Snell’s law is obtained as a con-
sequence of Eq. (C6). If a particle moves in a medium
with constant n = n1 (a straight line trajectory since the
force vanishes) and passes through a plane interface be-
yond which n = n2, it receives an impulse perpendicular
to the plane. Thus, from the first of (C6), the component
of nv̂ parallel to the plane does not change:

n1v̂1,|| = n2v̂2,|| or n1 sin θ1 = n2 sin θ2,

where θ is the angle made by v̂ and the normal to the
plane

We wish to find the solution of Eq. (C4) when v̂(x)
is the velocity field whose flow lines are described by Eq.
(C6). We shall now see that Φ0 is the least action for
this motion. For, consider the principle of minimizing
the particular action

A(x) ≡
∫ x

x0

dtL(x(t), ẋ(t)) ≡
∫ x

x0

dtn(x(t))[ẋ(t) · ẋ(t)]1/2

(C7)
We note for later use that t can be replaced by any func-
tion of t without altering the action. The principle of
least action gives rise to Lagrange’s equation,

d

dt

n(x)v
[v · v]1/2

= [∇n(x)][v · v]1/2, (C8)
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where v = ẋ(t). By choosing t = s, where s is the
distance travelled by the particle, so ds2 = dx · dx, the
velocity v = dx/ds has speed v · v = 1. Then, Eq. (C8)
is identical to the equation of motion Eq. (C6).

Imagine the vector field passing through an initial sur-
face, labeled by coordinate s = 0 and proceeding on-
ward. Since each member of the family of subsequent
s = constant surfaces is perpendicular to v̂, we have
∇s(x) = C(x)v̂(x), where C is some function. However,

v̂ ·∇s =
∑

i

dxi

ds

∂

∂xi
s =

ds

ds
= 1,

so C = 1 and ∇s = v̂.
Then, Eq. (C7) may be written:

A0(x) ≡
∫ s(x)

0
dsL(x(s), v̂(s)) =

∫ s(x)

0
dsn(x(s)),

(C9)
where it is understood that x, v̂ depend not only upon
s, but also on two other coordinates, say ξ, η, laid out
upon the constant s surfaces. So, from (C9),

∇A0(x) = n(x(s))∇s = n(x(s))v̂(s). (C10)

This is the same as (C4), so Φ0 = A0.
Φ0 is called the optical path length. A light ray follows

the flow line of the fictitious particle we have been con-
sidering but, of course, it moves along that path with the
speed of light c/n. So, when a light ray moves through
the distance ds, that takes time dt=dsn/c. Thus, accord-
ing to Eq. (C9), the optical path length Φ0 is just the
integrated time that light takes to go from one place to
another, multiplied by c. (The “principle of least time,”
the idea that the actual path light takes between two
points is the path which takes the least time, is due to
Fermat in 1662.) As a consequence, all rays of light which
have the same phase at the surface s = 0 and travel to
the surface s have the same phase there. The surface of
constant s is called a “wave front.”

To complete the WKB approximation, we need to find
Φ1. Setting Φ1 = iΦI

1 in Eq. (C3), with use of (C4), we
have that

2nv̂ · ΦI
1 = 2n

d

ds
ΦI

1 = ∇ · (nv̂) =
d

ds
n + n∇ · v̂.

From the second and fourth terms of this equation,

ΦI
1(x) = lnn1/2(x) +

1
2

∫ s(x)

0
ds∇ · v̂(x(s)). (C11)

Thus, from Eqs.(C9),(C11), we obtain the WKB ap-
proximate solution of the wave equation:

U(x) = n−1/2(x)e−
1
2

R s(x)
0 ds∇·v̂(x(s))eik

R s(x)
0 dsn(x(s))

(C12)
Eq. (C12) is what shall be used in what follows. It

requires specifying an initial surface for s = 0. From

this, at any point x0 on this surface, the initial veocity
field v̂(x0) can be determined, since it is perpendicular
to the surface and of unit length. Then, one can solve
the dynamical equation (C6) to obtain the velocity field
elsewhere, and find the specific trajectories x(s,x0). This
allows calculation of the integrals in (C12), resulting in
the WKB solution U(x). If n(x0) = 1, this solution has
U(x0) = 1. If a solution with any other value U0(x0) on
the s = 0 surface is desired, it is U0(x0)U(x).

The last factor in Eq. (C12) is well known in optics,
as the eikonal or ray approximation. What has been
shown here is that it is justified as the WKB approximate
solution of the wave equation.

For our problem, of a point source at x = 0, we choose
the s = 0 surface to be spherical, of infinitesimal radius,
centered at x = 0. Therefore, the initial velocity em-
anates radially out from x = 0. We assume n = 1, for at
least a small volume around x = 0. Then, by Eq. (C6),
dv/dt = 0 so v̂(x) = r/r = r̂, where r is the radial vec-
tor. Since ∇ · r̂f(r) = r−2d2[r2f(r)]/dr2, with f = 1 we
get ∇ · v̂ = 2/r. The distance travelled from s = 0, along
the velocity field, is s = r. Putting this into Eq. (C12)
gives, in this volume,

U(x) =
1
r
eikr. (C13)

This satisfies the wave equation Eq. (C1), with a unit
point source at the origin.

APPENDIX D: REFLECTION FROM LENSES
AND MIRRORS

This subsection is a diversion from our main argument,
and may be skipped. It is here for logical completeness,
and to make some pedagogical points.

In applications to optical systems, light, initially in
vacuum, encounters an abrupt change of index of refrac-
tion, in the form of lenses or mirrors. The latter may
be accommodated by setting n = −∞ in the volume of
the mirror. This may be understood from the quantum
theory analogy, where n = −∞ turns the potential well
into an infinite potential barrier.

How good is the WKB approximation in this case? For
completely empty space, Eq. (C13) is the exact solution
of Eq. (C1). However, in non-empty space, there is an
obvious failure when two rays cross. In that case, from
(C4), ∇Φ0 ∼ v̂ would then have two possible values,
which is impossible.

1. Mirrors

This is what occurs at the surface of a mirror. For
example, for a plane mirror at z = 0, and an incoming
plane wave of wave number k and direction v̂ = ĵa + k̂b,
we know the solution of the wave equation. It is the sum


